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Anharmonic double well potential

V (x) =
1
2
x2(1−√gx)2
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Energies to be determined from integral in Euclidean space.

c0e−E0T + c1e−E1T =

∫
D[x(τ)]e−S[x(τ)]

S [x(τ)] =

∫ T/2
−T/2
dτ
(

1
2
ẋ2(τ) + V (x(τ))

)



Instanton calculus Interaction of instantons Borel sum Comparison with numerics Summary

x1

Τ
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g

Action of an instanton

S [x1] = S0 = 1/6g

x1 x1

x2

Τ
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g

Action of n instantons

S [xn] = nS0 = n/6g
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c0e−E0T + c1e−E1T =

∫
D[x(τ)]e−S[x(τ)]

=
∑
n

∫ T/2
−T/2
dt1 . . . dt2n
ti<ti+1

e−2nS0cκ2ne−T/2
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determinant
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= ce−T/2 cosh(κTe−S0)

Energies shifted by
nonperturbative quantity
compared to E (g = 0).

E0 =
1
2
− 1
√
πg
e−1/6g

E1 =
1
2

+
1
√
πg
e−1/6g
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True energies [Zinn-Justin]

E0 =
∑
n
angn −

1
√
πg
e−1/6g

∑
n
bngn = Epert. − δ1E

E1 =
∑
n
angn +

1
√
πg
e−1/6g

∑
n
bngn = Epert. + δ1E

Instanton calculus gives complete information about difference of
energies for small g :

∆E = E1 − E0 =
2
√
πg
e−1/6g

∑
n
bngn



Instanton calculus Interaction of instantons Borel sum Comparison with numerics Summary

True energies [Zinn-Justin]

E0 =
∑
n
angn −

1
√
πg
e−1/6g

∑
n
bngn = Epert. − δ1E

E1 =
∑
n
angn +

1
√
πg
e−1/6g

∑
n
bngn = Epert. + δ1E

Instanton calculus gives complete information about difference of
energies for small g :

∆E = E1 − E0 =
2
√
πg
e−1/6g

∑
n
bngn



Instanton calculus Interaction of instantons Borel sum Comparison with numerics Summary

Interaction of instantons

x1 x1

x2

Τ

1

g

Action of two instantons

S [x2] = 2/6g − 2e−|t1−t2|/g [Bogomolny]

Contribution to the integral coming from two instantons

Z2 =

∫ T/2
−T/2
dt1dt2e−S[x2] ≈

1
2

(Te−S0)2 + Te−2S0 I (g)

I (g) =

∫ ∞
0
dR(exp(2e−R/g)− 1)
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I (g) =

∫ ∞
0
dR(exp(2e−R/g)− 1)

Dilute gas approximation:

g > 0 ⇒ main contribution from small R WRONG
g < 0 ⇒ main contribution from large R OK

Calculate the integral for negative g and continue to positive g

I (g) ≈ −γ + ln(−g/2) = −γ + ln(g/2)± iπ

E0 =
1
2
− 1
√
gπ
e−1/6g +

1
gπ
e−1/3g (γ + ln(−2/g))

E1 =
1
2

+
1
√
gπ
e−1/6g +

1
gπ
e−1/3g (γ + ln(−2/g))
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E0,1 =
∑
n
angn ±

1
√
gπ
e−1/6g

∑
n
bngn

+
1
gπ
e−1/3g (γ + ln(−2/g))

∑
n
cngn

= Epert. ± δ1E + δ2E [Zinn-Justin]

Why should we bother with instanton interactions?

• Much smaller than perturbative energy and free instantons.

• No chance to see them numerically !?

But

• Borel series ambiguity cured. [Ünsal]

• Imaginary part cancels.

• Real part actually can be seen in energy average!
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Perturbative expansion

Hψ = Eψ(
1
2
P2 + V (X )

)∑
n,k

αn,kg
n |k〉 =

∑
n
εngn

∑
n,k

αn,kg
n |k〉

Solve this equation recursively to obtain αn,k and εn.

E =
∑
n
εngn

But: this is
nonalternating(!)
asymptotic series.
[Bender, Wu]

ε0 1/2
ε1 −1
ε2 −9/2
ε3 −89/2
ε4 −5013/8
ε350 −1.15× 10907 ≈ −0.95× 3350 × 350!
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Borel transform

B(t) =
∑
n

1
n!
εntn

Inverse Borel transform needs B(t) on the positive real axis

EBorel(g) =
1
g

∫ ∞
0
dte−t/gB(t)

But:
B(t) has radius of
convergence only 1/3.
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Pade approximant
Padé approximant provides information about analytical
continuation of Borel transform.

Pn(t) ratio of polynomials of order n, P(i)(0) = B(i)(0) : i ¬ 2n

n=170
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Padepoles.swf
Media File (application/x-shockwave-flash)
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Analytical continuation of Borel transform has a cut at (1/3,∞).
⇒ Integrate along a contour.

poles of Borel transform

no
dy

in
g

ex
po

ne
nt

1
3
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Re t
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1.0

1.5

2.0
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Im t

Integration limit Re t < 2 ⇒ error of order e−2/g – unimportant.
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Borel sum and instantons

Borel sum
EBorel can be calculated only for t = t + iε or t = t − iε.

If B(t) had only a simple pole at t = 1/3 the two cases would
differ by ig e

−1/3g × const.

Instanton interaction
Instanton interactions exist in limits g = g + iε and g = g − iε!

δ2E in these cases differ by 2ig e
−1/3g

Do these two ambiguities cancel?
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Cut Fock space method
• express Hamiltonian as a matrix:

(H)m,n = 〈m|1
2
P2 + V (X )|n〉

• introduce cutoff to get finite matrix
• eigenvalues approximate energies [Wosiek]

g=0.003

10 20 30 40 50 60 70 cutoff

5

10

15

20
E
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Is instanton contribution needed?

without δ2E

0.03 0.06 0.09 0.12 g

-0.8

-0.4

0.4

E

Im EBorel

Re EBorel

EFock

with δ2E

0.03 0.06 0.09 0.12 g

-0.8

-0.4

0.4

E

Im HEBorel+∆2EL
Re HEBorel+∆2EL

EFock

Adding δ2E improves result for g < 0.07 and worsens for g > 0.09.
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High precision comparison
without δ2E

5 ´ 10-4 0.001 0.005 0.010 0.050 0.100g10-9

10-7

10-5

0.001

0.1

10
HEFock-EBorelL�∆2E

imaginary

real
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High precision comparison
with δ2E

5 ´ 10-4 0.001 0.005 0.010 0.050 0.100g10-9

10-7

10-5

0.001

0.1

10
HEFock-EBorel-∆2EL�∆2E

imaginary

real

Next correction is seen!



Instanton calculus Interaction of instantons Borel sum Comparison with numerics Summary

Summary

• instanton interactions cancel ambiguity of Borel energies

• instanton interactions improve Borel energies for small g

• for larger g the (asymptotic) series
∑
cngn becomes

important and needs to be summed (Borel sum?)

• but only few cn are known

• next corrections: 3–instanton interactions
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