Instanton interactions and Borel summability

Zbigniew Ambroziński

26 marca 2012

Plan of the seminar

Instanton calculus

Interaction of instantons

Borel sum

Comparison with numerics

Summary

Anharmonic double well potential

$$
V(x)=\frac{1}{2} x^{2}(1-\sqrt{g} x)^{2}
$$

Energies to be determined from integral in Euclidean space.

$$
\begin{aligned}
& c_{0} e^{-E_{0} T}+c_{1} e^{-E_{1} T}=\int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]} \\
& S[x(\tau)]=\int_{-T / 2}^{T / 2} d \tau\left(\frac{1}{2} \dot{x}^{2}(\tau)+V(x(\tau))\right)
\end{aligned}
$$

Action of an instanton

$$
S\left[x_{1}\right]=S_{0}=1 / 6 g
$$

Action of an instanton

$$
S\left[x_{1}\right]=S_{0}=1 / 6 g
$$

Action of n instantons

$$
S\left[x_{n}\right]=n S_{0}=n / 6 g
$$

$$
c_{0} e^{-E_{0} T}+c_{1} e^{-E_{1} T}=\int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]}
$$

$$
\begin{array}{ll}
c_{0} e^{-E_{0} T}+c_{1} e^{-E_{1} T} & =\int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]} \\
& =\sum_{n} \int_{-T / 2}^{T / 2} d t_{1} \ldots d t_{t_{i}<t_{i+1}} e^{-2 n S_{0}} c \kappa^{2 n} e^{-T / 2}
\end{array}
$$

$$
\begin{aligned}
c_{0} e^{-E_{0} T}+c_{1} e^{-E_{1} T} & =\int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]} \\
& =\sum_{n} \int_{-T / 2}^{T / 2} d t_{t_{i}<t_{i+1}} \ldots d t_{2 n} e^{-2 n S_{0}} c \kappa^{2 n} e^{-T / 2} \\
\text { sum over } & \text { integration over } \quad \text { classical van Vleck } \\
\text { classical solutions } & \text { zero modes } \quad \text { action determinant } \\
& =c e^{-T / 2} \cosh \left(\kappa T e^{-S_{0}}\right)
\end{aligned}
$$

Energies shifted by nonperturbative quantity compared to $E(g=0)$.

$$
\begin{aligned}
& E_{0}=\frac{1}{2}-\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g} \\
& E_{1}=\frac{1}{2}+\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g}
\end{aligned}
$$

True energies [Zinn-Justin]

$$
\begin{aligned}
& E_{0}=\sum_{n} a_{n} g^{n}-\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n}=E_{\text {pert. }}-\delta_{1} E \\
& E_{1}=\sum_{n} a_{n} g^{n}+\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n}=E_{\text {pert. }}+\delta_{1} E
\end{aligned}
$$

True energies [Zinn-Justin]

$$
\begin{aligned}
& E_{0}=\sum_{n} a_{n} g^{n}-\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n}=E_{\text {pert. }}-\delta_{1} E \\
& E_{1}=\sum_{n} a_{n} g^{n}+\frac{1}{\sqrt{\pi g}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n}=E_{\text {pert. }}+\delta_{1} E
\end{aligned}
$$

Instanton calculus gives complete information about difference of energies for small g :

$$
\Delta E=E_{1}-E_{0}=\frac{2}{\sqrt{\pi g}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n}
$$

Interaction of instantons

Action of two instantons

$$
S\left[x_{2}\right]=2 / 6 g-2 e^{-\left|t_{1}-t_{2}\right|} / g \quad \text { [Bogomolny] }
$$

Contribution to the integral coming from two instantons

$$
\begin{aligned}
Z_{2} & =\int_{-T / 2}^{T / 2} d t_{1} d t_{2} e^{-S\left[x_{2}\right]} \approx \frac{1}{2}\left(T e^{-S_{0}}\right)^{2}+T e^{-2 S_{0}} I(g) \\
I(g) & =\int_{0}^{\infty} d R\left(\exp \left(2 e^{-R} / g\right)-1\right)
\end{aligned}
$$

$$
I(g)=\int_{0}^{\infty} d R\left(\exp \left(2 e^{-R} / g\right)-1\right)
$$

Dilute gas approximation:
$g>0 \Rightarrow$ main contribution from small $R \quad$ WRONG $g<0 \Rightarrow$ main contribution from large $R \quad$ OK

Calculate the integral for negative g and continue to positive g

$$
\begin{gathered}
I(g) \approx-\gamma+\ln (-g / 2)=-\gamma+\ln (g / 2) \pm i \pi \\
E_{0}=\frac{1}{2}-\frac{1}{\sqrt{g \pi}} e^{-1 / 6 g}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) \\
E_{1}=\frac{1}{2}+\frac{1}{\sqrt{g \pi}} e^{-1 / 6 g}+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g))
\end{gathered}
$$

$$
\begin{aligned}
& E_{0,1}= \sum_{n} a_{n} g^{n} \pm \frac{1}{\sqrt{g \pi}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n} \\
& \quad+\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) \sum_{n} c_{n} g^{n} \\
&= E_{\text {pert. }} \pm \delta_{1} E+\delta_{2} E \\
& \text { [Zinn-Justin] }
\end{aligned}
$$

Why should we bother with instanton interactions?

- Much smaller than perturbative energy and free instantons.
- No chance to see them numerically !?

$$
\begin{aligned}
E_{0,1}= & \sum_{n} a_{n} g^{n} \pm \frac{1}{\sqrt{g \pi}} e^{-1 / 6 g} \sum_{n} b_{n} g^{n} \\
& +\frac{1}{g \pi} e^{-1 / 3 g}(\gamma+\ln (-2 / g)) \sum_{n} c_{n} g^{n} \\
= & E_{\text {pert. }} \pm \delta_{1} E+\delta_{2} E \quad \text { [Zinn-Justin] }
\end{aligned}
$$

Why should we bother with instanton interactions?

- Much smaller than perturbative energy and free instantons.
- No chance to see them numerically !?

But

- Borel series ambiguity cured. [Ünsal]
- Imaginary part cancels.
- Real part actually can be seen in energy average!

Perturbative expansion

$$
\begin{aligned}
H \psi & =E \psi \\
\left(\frac{1}{2} P^{2}+V(X)\right) \sum_{n, k} \alpha_{n, k} g^{n}|k\rangle & =\sum_{n} \epsilon_{n} g^{n} \sum_{n, k} \alpha_{n, k} g^{n}|k\rangle
\end{aligned}
$$

Solve this equation recursively to obtain $\alpha_{n, k}$ and ϵ_{n}.

$$
E=\sum_{n} \epsilon_{n} g^{n}
$$

But: this is
nonalternating(!)
asymptotic series.
[Bender, Wu]

$$
\begin{array}{ll}
\epsilon_{0} & 1 / 2 \\
\epsilon_{1} & -1 \\
\epsilon_{2} & -9 / 2 \\
\epsilon_{3} & -89 / 2 \\
\epsilon_{4} & -5013 / 8 \\
\epsilon_{350} & -1.15 \times 10^{907} \approx-0.95 \times 3^{350} \times 350!
\end{array}
$$

Borel transform

$$
\mathcal{B}(t)=\sum_{n} \frac{1}{n!} \epsilon_{n} t^{n}
$$

Inverse Borel transform needs $\mathcal{B}(t)$ on the positive real axis

$$
E_{\text {Borel }}(g)=\frac{1}{g} \int_{0}^{\infty} d t e^{-t / g} \mathcal{B}(t)
$$

But:
$\mathcal{B}(t)$ has radius of convergence only $1 / 3$.
$\operatorname{Re} \mathcal{B}(\mathrm{t})$

Pade approximant

Padé approximant provides information about analytical continuation of Borel transform.
$\mathcal{P}_{n}(t) \quad$ ratio of polynomials of order $n, \quad \mathcal{P}^{(i)}(0)=\mathcal{B}^{(i)}(0): \quad i \leqslant 2 n$

Analytical continuation of Borel transform has a cut at $(1 / 3, \infty)$. \Rightarrow Integrate along a contour.

Integration limit $\operatorname{Re} t<2 \Rightarrow$ error of order $e^{-2 / g}$ - unimportant.

Borel sum and instantons

Borel sum
$E_{\text {Borel }}$ can be calculated only for $t=t+i \epsilon$ or $t=t-i \epsilon$.
If $\mathcal{B}(t)$ had only a simple pole at $t=1 / 3$ the two cases would differ by $\frac{i}{g} e^{-1 / 3 g} \times$ const.

Borel sum and instantons

Borel sum
$E_{\text {Borel }}$ can be calculated only for $t=t+i \epsilon$ or $t=t-i \epsilon$.
If $\mathcal{B}(t)$ had only a simple pole at $t=1 / 3$ the two cases would differ by $\frac{i}{g} e^{-1 / 3 g} \times$ const.

Instanton interaction
Instanton interactions exist in limits $g=g+i \epsilon$ and $g=g-i \epsilon$!
$\delta_{2} E$ in these cases differ by $\frac{2 i}{g} e^{-1 / 3 g}$
Do these two ambiguities cancel?

Cut Fock space method

- express Hamiltonian as a matrix:

$$
(H)_{m, n}=\langle m| \frac{1}{2} P^{2}+V(X)|n\rangle
$$

- introduce cutoff to get finite matrix
- eigenvalues approximate energies [Wosiek]

Is instanton contribution needed?

without $\delta_{2} E$

with $\delta_{2} E$

Adding $\delta_{2} E$ improves result for $g<0.07$ and worsens for $g>0.09$.

High precision comparison without $\delta_{2} E$

High precision comparison

 with $\delta_{2} E$

Next correction is seen!

Summary

- instanton interactions cancel ambiguity of Borel energies

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)
- but only few c_{n} are known

Summary

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series $\sum c_{n} g^{n}$ becomes important and needs to be summed (Borel sum?)
- but only few c_{n} are known
- next corrections: 3-instanton interactions

Literature

- E.B. Bogomolny Calculation if instanton - anti-instanton contributions in quantum mechanics, Phys.Lett. B91 (1980) 431-435
- J. Zinn-Justin, Multi - instanton contributions in quantum mechanics, Nucl.Phys. B192 (1981) 125-140; J. Zinn-Justin, U.D. Jentschura, Higher order corrections to instantons, J.Phys.A A34 (2001) L253-L258
- M. Ünsal, Theta dependence, sign problems and topological interference, arXiv:1201.6426
- C. M. Bender, T. T. Wu, Anharmonic oscillator, Phys.Rev. 184 (1969) 1231-1260
- M. Trzetrzelewski, J. Wosiek, Quantum systems in a cut Fock space, Acta Phys.Polon. B35 (2004) 1615-1624;
J. Wosiek, Spectra of supersymmetric Yang-Mills quantum mechanics, Nucl.Phys. B644 (2002) 85-112

