Instanton interactions and Borel summability

Zbigniew Ambroziński

26 marca 2012

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

Borel sum

Plan of the seminar

Instanton calculus

Interaction of instantons

Borel sum

Comparison with numerics

Anharmonic double well potential

Energies to be determined from integral in Euclidean space.

$$c_0 e^{-E_0 T} + c_1 e^{-E_1 T} = \int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]}$$
$$S[x(\tau)] = \int_{-T/2}^{T/2} d\tau \left(\frac{1}{2} \dot{x}^2(\tau) + V(x(\tau))\right)$$

Action of an instanton

$$S[x_1] = S_0 = 1/6g$$

Action of an instanton

Action of n instantons

$$S[x_n] = nS_0 = n/6g$$

 $c_0 e^{-E_0 T} + c_1 e^{-E_1 T} = \int \mathcal{D}[x(\tau)] e^{-S[x(\tau)]}$

$$= ce^{-T/2} \cosh(\kappa T e^{-S_0})$$

Energies shifted by nonperturbative quantity compared to E(g = 0).

$$E_0 = \frac{1}{2} - \frac{1}{\sqrt{\pi g}} e^{-1/6g}$$
$$E_1 = \frac{1}{2} + \frac{1}{\sqrt{\pi g}} e^{-1/6g}$$

True energies [Zinn-Justin]

$$E_{0} = \sum_{n} a_{n}g^{n} - \frac{1}{\sqrt{\pi g}}e^{-1/6g}\sum_{n} b_{n}g^{n} = E_{pert.} - \delta_{1}E$$
$$E_{1} = \sum_{n} a_{n}g^{n} + \frac{1}{\sqrt{\pi g}}e^{-1/6g}\sum_{n} b_{n}g^{n} = E_{pert.} + \delta_{1}E$$

True energies [Zinn-Justin]

$$E_{0} = \sum_{n} a_{n}g^{n} - \frac{1}{\sqrt{\pi g}}e^{-1/6g}\sum_{n} b_{n}g^{n} = E_{pert.} - \delta_{1}E$$
$$E_{1} = \sum_{n} a_{n}g^{n} + \frac{1}{\sqrt{\pi g}}e^{-1/6g}\sum_{n} b_{n}g^{n} = E_{pert.} + \delta_{1}E$$

Instanton calculus gives complete information about difference of energies for small g:

$$\Delta E = E_1 - E_0 = \frac{2}{\sqrt{\pi g}} e^{-1/6g} \sum_n b_n g^n$$

Interaction of instantons

Action of two instantons

$$S[x_2] = 2/6g - 2e^{-|t_1 - t_2|}/g$$
 [Bogomolny]

Contribution to the integral coming from two instantons

$$Z_{2} = \int_{-T/2}^{T/2} dt_{1} dt_{2} e^{-S[x_{2}]} \approx \frac{1}{2} (Te^{-S_{0}})^{2} + Te^{-2S_{0}} I(g)$$
$$I(g) = \int_{0}^{\infty} dR (\exp(2e^{-R}/g) - 1)$$

$$I(g) = \int_0^\infty dR(\exp(2e^{-R}/g) - 1)$$

Dilute gas approximation:

- $g > 0 \Rightarrow$ main contribution from small R WRONG $g < 0 \Rightarrow$ main contribution from large R OK
- Calculate the integral for negative g and continue to positive g

$$I(g) pprox -\gamma + \ln(-g/2) = -\gamma + \ln(g/2) \pm i\pi$$

$$E_{0} = \frac{1}{2} - \frac{1}{\sqrt{g\pi}} e^{-1/6g} + \frac{1}{g\pi} e^{-1/3g} (\gamma + \ln(-2/g))$$
$$E_{1} = \frac{1}{2} + \frac{1}{\sqrt{g\pi}} e^{-1/6g} + \frac{1}{g\pi} e^{-1/3g} (\gamma + \ln(-2/g))$$

$$E_{0,1} = \sum_{n} a_n g^n \pm \frac{1}{\sqrt{g\pi}} e^{-1/6g} \sum_{n} b_n g^n$$
$$+ \frac{1}{g\pi} e^{-1/3g} (\gamma + \ln(-2/g)) \sum_{n} c_n g^n$$
$$= E_{pert.} \pm \delta_1 E + \delta_2 E \qquad [Zinn-Justin]$$

Why should we bother with instanton interactions?

- Much smaller than perturbative energy and free instantons.
- No chance to see them numerically !?

$$E_{0,1} = \sum_{n} a_{n}g^{n} \pm \frac{1}{\sqrt{g\pi}} e^{-1/6g} \sum_{n} b_{n}g^{n}$$
$$+ \frac{1}{g\pi} e^{-1/3g} (\gamma + \ln(-2/g)) \sum_{n} c_{n}g^{n}$$
$$= E_{pert.} \pm \delta_{1}E + \delta_{2}E \qquad [Zinn-Justin]$$

Why should we bother with instanton interactions?

- Much smaller than perturbative energy and free instantons.
- No chance to see them numerically !?

But

- Borel series ambiguity cured. [Ünsal]
- Imaginary part cancels.
- Real part actually can be seen in energy average!

Perturbative expansion

$$H\psi = E\psi$$

$$\left(\frac{1}{2}P^{2} + V(X)\right)\sum_{n,k}\alpha_{n,k}g^{n}\left|k\right\rangle = \sum_{n}\epsilon_{n}g^{n}\sum_{n,k}\alpha_{n,k}g^{n}\left|k\right\rangle$$

Solve this equation recursively to obtain $\alpha_{n,k}$ and ϵ_n .

$$E = \sum_{n} \epsilon_{n} g^{n}$$

But: this is nonalternating(!) asymptotic series. [Bender, Wu]

ϵ_0	1/2
ϵ_1	-1
ϵ_2	-9/2
ϵ_3	-89/2
ϵ_4	-5013/8
ϵ_{350}	$-1.15 \times 10^{907} \approx -0.95 \times 3^{350} \times 350!$

Borel transform

$$\mathcal{B}(t) = \sum_{n} \frac{1}{n!} \epsilon_n t^n$$

Inverse Borel transform needs $\mathcal{B}(t)$ on the positive real axis

But: $\mathcal{B}(t)$ has radius of convergence only 1/3.

Pade approximant

Padé approximant provides information about analytical continuation of Borel transform.

 $\mathcal{P}_n(t)$ ratio of polynomials of order n, $\mathcal{P}^{(i)}(0) = \mathcal{B}^{(i)}(0)$: $i \leqslant 2n$

Analytical continuation of Borel transform has a cut at $(1/3, \infty)$. \Rightarrow Integrate along a contour.

Integration limit Re $t < 2 \Rightarrow$ error of order $e^{-2/g}$ – unimportant.

Borel sum and instantons

Borel sum

 E_{Borel} can be calculated only for $t = t + i\epsilon$ or $t = t - i\epsilon$.

If $\mathcal{B}(t)$ had only a simple pole at t = 1/3 the two cases would differ by $\frac{i}{g}e^{-1/3g} \times const$.

Borel sum and instantons

Borel sum

 E_{Borel} can be calculated only for $t = t + i\epsilon$ or $t = t - i\epsilon$.

If $\mathcal{B}(t)$ had only a simple pole at t = 1/3 the two cases would differ by $\frac{i}{g}e^{-1/3g} \times const$.

Instanton interaction

Instanton interactions exist in limits $g = g + i\epsilon$ and $g = g - i\epsilon!$

 $\delta_2 E$ in these cases differ by $\frac{2i}{g}e^{-1/3g}$

Do these two ambiguities cancel?

Cut Fock space method

• express Hamiltonian as a matrix:

$$(H)_{m,n} = \langle m | \frac{1}{2} P^2 + V(X) | n \rangle$$

- introduce cutoff to get finite matrix
- eigenvalues approximate energies [Wosiek]

Is instanton contribution needed?

Adding $\delta_2 E$ improves result for g < 0.07 and worsens for g > 0.09.

High precision comparison without $\delta_2 E$

High precision comparison with $\delta_2 E$

Next correction is seen!

• instanton interactions cancel ambiguity of Borel energies

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series ∑ c_ngⁿ becomes important and needs to be summed (Borel sum?)

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series ∑ c_ngⁿ becomes important and needs to be summed (Borel sum?)
- but only few c_n are known

- instanton interactions cancel ambiguity of Borel energies
- instanton interactions improve Borel energies for small g
- for larger g the (asymptotic) series ∑ c_ngⁿ becomes important and needs to be summed (Borel sum?)
- but only few *c_n* are known
- next corrections: 3-instanton interactions

Literature

- E.B. Bogomolny Calculation if instanton anti-instanton contributions in quantum mechanics, Phys.Lett. B91 (1980) 431-435
- J. Zinn-Justin, Multi instanton contributions in quantum mechanics, Nucl.Phys. B192 (1981) 125-140;
 J. Zinn-Justin, U.D. Jentschura, Higher order corrections to instantons, J.Phys.A A34 (2001) L253-L258
- M. Ünsal, *Theta dependence, sign problems and topological interference,* arXiv:1201.6426
- C. M. Bender, T. T. Wu, *Anharmonic oscillator*, Phys.Rev. 184 (1969) 1231-1260
- M. Trzetrzelewski, J. Wosiek, Quantum systems in a cut Fock space, Acta Phys.Polon. B35 (2004) 1615-1624;
 J. Wosiek, Spectra of supersymmetric Yang-Mills quantum mechanics, Nucl.Phys. B644 (2002) 85-112